Estimation of differential occupational risk of COVID-19 by comparing risk factors with case data by occupational group

Source avec lien : American Journal of Industrial Medicine, (Prépublication), novembre 2020. https://doi.org/10.1002/ajim.23199

Cette étude évalue le risque différentiel de COVID-19 par profession en utilisant les prédicteurs de la base de données de l’Occupational Information Network (O*NET) et en les mettant en corrélation avec les nombres de cas publiés par le ministère de la santé de l’État de Washington afin d’identifier les travailleurs des différentes professions qui présentent le plus grand risque d’infection par COVID-19. L’étude révèle que les professions les plus à risque sont celles du secteur des soins de santé, en particulier les soins dentaires, mais que de nombreuses professions non liées aux soins de santé sont également vulnérables. Les auteurs concluent qu’il faut recueillir des données complètes dans de nombreux États pour orienter de manière adéquate la mise en œuvre d’interventions spécifiques aux professions dans la lutte contre la COVID-19.

Background The disease burden of coronavirus disease 2019 (COVID-19) is not uniform across occupations. Although healthcare workers are well-known to be at increased risk, data for other occupations are lacking. In lieu of this, models have been used to forecast occupational risk using various predictors, but no model heretofore has used data from actual case numbers. This study assesses the differential risk of COVID-19 by occupation using predictors from the Occupational Information Network (O*NET) database and correlating them with case counts published by the Washington State Department of Health to identify workers in individual occupations at highest risk of COVID-19 infection. Methods The O*NET database was screened for potential predictors of differential COVID-19 risk by occupation. Case counts delineated by occupational group were obtained from public sources. Prevalence by occupation was estimated and correlated with O*NET data to build a regression model to predict individual occupations at greatest risk. Results Two variables correlate with case prevalence: disease exposure (r = 0.66; p = 0.001) and physical proximity (r = 0.64; p = 0.002), and predict 47.5% of prevalence variance (p = 0.003) on multiple linear regression analysis. The highest risk occupations are in healthcare, particularly dental, but many nonhealthcare occupations are also vulnerable. Conclusions Models can be used to identify workers vulnerable to COVID-19, but predictions are tempered by methodological limitations. Comprehensive data across many states must be collected to adequately guide implementation of occupation-specific interventions in the battle against COVID-19.

Lisez l’article

Laisser un commentaire