Source avec lien : International Journal of Pharmaceutical Compounding, 26(1).
Les dispositifs de transfert en système fermé atténuent les risques d’exposition professionnelle associés à la manipulation de médicaments dangereux. Cette étude a été menée dans un laboratoire contrôlé afin d’évaluer l’efficacité d’un dispositif de transfert à système fermé sans aiguille et avec aiguille pour minimiser la contamination de surface pendant la préparation, la préparation et l’administration simulées. Un dispositif de transfert en système fermé avec et sans aiguille a été soumis à trois essais par système.
Closed-system transfer devices mitigate occupational exposure risks associated with hazardous-drug handling. This study was conducted in a controlled laboratory to evaluate the effectiveness of a needle-free and a needle-based closed-system transfer device in minimizing surface contamination during simulated compounding, preparation, and administration. A needle-based and a needle-free closed-system transfer device underwent three trials per system. Each trial included reconstituting cyclophosphamide in a vial, withdrawing cyclophosphamide from the vial, and pushing cyclophosphamide into an intravenous bag. After every trial, wipe samples were collected from five sources: biological safety cabinet workbench (left and right sides), biological safety cabinet grill, biological safety cabinet airfoil, and technicians’ gloves. Wipe samples were then analyzed using high-performance liquid chromatography with dual-mass spectrometry to measure cyclophosphamide concentrations. Surface contamination levels from 30 post-trial tests (15 per device) are reported, representing five different surface wipe samples from three trials for each device. Pre-trial samples of precleaned vials and work surfaces were obtained to ensure no cyclophosphamide contamination. Field blank samples were analyzed for quality-control purposes. Post-trial wipe sample analyses following each of the three needle- free trials did not detect cyclophosphamide on the biological safety cabinet workbench (both left/right), biological safety cabinet grill, biological safety cabinet airfoil, or the technician’s gloves. For the needle-based closed-system transfer device, the wipe sample analyses after the first trial showed no contamination; however, cyclophosphamide was detected on the right biological safety cabinet workbench at concentrations of 0.223 ng/cm2 and 0.021 ng/cm2, respectively, following the second and third trials. No cyclophosphamide was found on the technician’s gloves after any of the three needle- based closed-system transfer device trials. Based on surface contamination analyses, this study verified the ability of a needle-free closed-system transfer device in preventing the escape of cyclophosphamide during simulated compounding and preparation. Needle-free closed-system transfer devices warrant consideration for the handling of hazardous drugs.