Source avec lien : Scientific Reports, 12(1). 10.1038/s41598-022-20952-8
Dans cette étude, l’efficacité relative des matériaux EPI actuels en termes d’adsorption des virions sur les matériaux et leur puissance antivirale a été évaluée pour la première fois sur une large gamme d’EPI, y compris quatre types de gants en polymère, deux types de blouses, un tablier, un masque, une visière et une sélection d’autres polymères et produits commerciaux.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—the causative agent of coronavirus disease 2019 (COVID-19)—has caused a global public health emergency. Personal protective equipment (PPE) is the primary defence against viral exposure in healthcare and community settings. However, the surfaces of PPE materials may trap virus for contact transmission or through laden aerosols generated during removal of PPE, through cleaning or during movement. In this study, the relative efficacy of current PPE materials in terms of virion adsorption to materials and their antiviral potency, has been evaluated on a wide range of PPE for the first time, including four polymer glove types, two types of scrubs, apron material, a mask, visor and a selection of other commercial polymers and products. Although differences in virion adsorption to the test materials were observed, none of the existing polymer-based PPE resulted in more than tenfold reduction in the SARS-CoV-2 titre within either 10 min or 30 min contact period. The wettability and surface chemistry of the test materials were analysed to investigate any correlations with their surface physicochemical properties. While no correlation was found between wettability and viral retention under air flow challenge, one secondary ion of m/z 101.03 (+) and three secondary ions of m/z 31.98 (−), 196.93 (−) and 394.33 (+) in ToF–SIMS data of the test materials showed positive and negative correlations with the viral retention, respectively, which was identified by PLS regression model, suggesting that the surface chemistry plays a role in determining the extent of virion adsorption. Our findings outline the material aspects that influence the efficacy of current PPE against SARS-CoV-2 transmission and give suggestions on the development of novel simple polymer-based PPE for better infection protection.