Source avec lien : Frontiers in Public Health, 10. 10.3389/fpubh.2022.1034289
L’objectif de cette étude était d’évaluer la formation d’aérosols pendant le traitement d’échantillons modèles dans un laboratoire simulé en situation réelle, puis appliquer ces résultats au coronavirus 2 du syndrome respiratoire aigu sévère (SARS-CoV-2) pour évaluer le risque d’infection pour les opérateurs de laboratoire.
Objectives To assess aerosol formation during processing of model samples in a simulated real-world laboratory setting, then apply these findings to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to assess the risk of infection to laboratory operators. Design This study assessed aerosol formation when using cobas e analyzers only and in an end-to-end laboratory workflow. Recombinant hepatitis B surface antigen (HBsAg) was used as a surrogate marker for infectious SARS-CoV-2 viral particles. Using the HBsAg model, air sampling was performed at different positions around the cobas e analyzers and in four scenarios reflecting critical handling and/or transport locations in an end-to-end laboratory workflow. Aerosol formation of HBsAg was quantified using the Elecsys® HBsAg II quant II immunoassay. The model was then applied to SARS-CoV-2. Results Following application to SARS-CoV-2, mean HBsAg uptake/hour was 1.9 viral particles across the cobas e analyzers and 0.87 viral particles across all tested scenarios in an end-to-end laboratory workflow, corresponding to a maximum inhalation rate of <16 viral particles during an 8-hour shift. Conclusion Low production of marker-containing aerosol when using cobas e analyzers and in an end-to-end laboratory workflow is consistent with a remote risk of laboratory-acquired SARS-CoV-2 infection for laboratory operators. Lisez l’article